
.Abstract-This paper discusses the application of artificial neural 
networks (ANNs) to preoperative discrimination between benign 
and malignant ovarian tumors. With the input variables selected 
by logistic regression analysis, two types of feed-forward neural 
networks were built: multi-layer perceptrons (MLPs) and 
generalized regression networks (GRNNs). We assess the 
performance of the models using the Receiver Operating 
Characteristic (ROC) curve, particularly the area under the 
ROC curves (AUC), and statistically compare the cross-
validated estimate of the AUC of different models.  
Keywords- Ovarian tumor, multi-layer perceptron, generalized 
regression network, logistic regression, ROC, cross-validation.  

 
I. INTRODUCTION 

 
Ovarian masses are a common problem in gynecology. A 

reliable test for preoperative discrimination between benign 
and malignant ovarian tumors is of considerable help for 
clinicians in choosing appropriate treatments for patients. 
Conservative management or less invasive surgery suffices 
for patients with a benign tumor; in contrast, those with 
suspected malignancy should be timely referred to an 
oncological surgeon.  

There have already been several attempts to automate the 
classification process, such as the risk of malignancy index 
and logistic regression [2][3]. This paper discusses the 
development of supervised ANNs, both MLPs and GRNNs, 
to predict the malignancy of ovarian tumors. Statistical data 
analysis and input selection are first described. Then the 
issues related to network design and training, especially how 
to avoid overfitting, are addressed. The use of AUC as 
performance measure of the models, and the statistical 
comparison of the overall performance of the models by 
means of cross-validation, are outlined. The results and 
conclusions are presented at the end of the paper. 
 

II. THE DATA 
 
The data set includes the information of 425 patients who 

were referred to the University Hospital Leuven, Belgium, 
between 1994 and 1999. Among the available 425 cases, 291 
patients had benign tumors, whereas 134 had malignant 
tumors. Firstly we performed a statistical analysis of the data. 
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Input variables for model building were selected by means of 
a multivariate logistic regression analysis. 

 
Univariate data analysis: The original data set contains 25 

features. Some feature values have been transformed prior to 
further analysis, e.g. CA 125 serum level was rescaled by 
taking its logarithm. Table I lists most important variables 
that were considered. 

TABLE I 
Demographic, serum marker, color Doppler imaging and morphologic variables 

 Variable (symbol) Benign Malignant 
Demographic Age (age) 

Postmenopausal (meno) 
45.6 ± 15.2 

31.0 % 
56.9 ± 14.6 

66.0 % 
Serum marker CA 125 (log) (l_ca125) 3.0 ± 1.2 5.2 ± 1.5 
CDI High color score (colsc4) 19.0% 77.3 % 
Morphologic Abdominal fluid (asc) 

Bilateral mass (bilat) 
Unilocular cyst (un) 
Multiloc/solid cyst (mulsol) 
Solid (sol) 
Smooth wall (smooth) 
Irregular wall (irreg) 
Papillations (pap)  

32.7 % 
13.3 % 
45.8 % 
10.7 % 
8.3 % 
56.8 % 
33.8 % 
12.5 % 

67.3 % 
39.0 % 
5.0 % 
36.2 % 
37.6 % 
5.7 % 
73.2 % 
53.2 % 

Note: for the continuous variables the mean and standard deviation for each 
class are reported; for binary variables, the last two columns give the relative 
presence of the feature in both classes of benign and malignant tumors, e.g. 
67.3% of the patients with a malignant tumor had abdominal fluid.  

 
Multivariate data analysis: To get a first idea of the 

important predictors, we performed a factor analysis using the 
principal components as factors. Fig. 1 shows the biplot in a 
2-dimensional space generated by (FACTOR1, FACTOR2). The 
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Fig. 1. Biplot of Ovarian Tumor data. The observations are plotted as 
points (0=benign, 1=malignant), the variables are plotted as vectors from 
the origin, i.e. taking the respective factor loadings as the coordinates. 



Report Documentation Page

Report Date 
25 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Using Artificial Neural Networks To Predict Malignancy of
Ovarian Tumors

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Department of Electrical Engineering Katholieke Universiteit
Leuven Leuven, Belgium 

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 803 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document
contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



biplot visualizes the correlation between the variables, and 
the relations between the features and classes. E.g. the 
variables with small angles like (age, meno) are highly 
correlated; the observations of malignant tumors (1) have 
relatively high values for variables sol, age, meno, asc, 
l_ca125, colsc4, pap, irreg, etc; but relatively low values for 
the variables colsc2, smooth, un, mul, etc. 
 

Input Selection: important predictors could be selected 
from stepwise multivariate logistic regression analysis of the 
whole data set. They could also be obtained by fixing several 
of the most significant variables, then varying combinations 
with the other predictive variables. Different logistic 
regression models with different subsets of input variables 
have been built and validated. In the end, two subsets of 
variables were selected according to their predictive 
performance on the training set and test set.  The subset with 
eight variables is just the result of the stepwise logistic 
regression, and is noted as MODEL1. The other subset is called 
MODEL2, containing seven variables (see Fig. 2).  
 

III. METHODS 
 
A. Network Design and Training 

Generalization is a central issue both in network design and 
training.  A properly trained NN should have the capability to 
extract the unknown relationships from the training data and 
have the generalization capability towards unseen cases from 
the same distribution. Overfitting occurs when the error on 
the training set is driven to a very small value, but when new 
data is presented to the network the error is large. Also, the 
more complex the neural network, the higher the risk for 
overfitting. 

 
Multi-layer Perceptrons:  
The most commonly used neural network structure for 

classification tasks, are multi-layer perceptrons (MLPs). Fig. 
2 illustrates the architecture of the one-hidden-layer, one 
output variable network and its mapping function, which we 
use in the experiments. The activation functions g(.) could 
vary from layer to layer; the typical ones are the logistic 
sigmoidal function, tanh activation function and threshold 
function.  

In the experiments, the number of hidden neurons is chosen 
as 3. The activation functions for both layers are logistic 
sigmoidal functions, which transform all the output values 
into the interval [0, 1]. We denote the MLP that takes MODEL1 
as input variables by MLP1; the one that takes MODEL2 as 
input variables is called MLP2. 

The training of the feed-forward NN is often done by an 
iterative backpropagation procedure, until the discrepancy 
between the target output tk and actual response yk is 
minimized. The commonly used error function which reflects 
this discrepancy within a set of N data, is the sum of squared 
error (sse) function 
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This type of error function is continuous and differentiable, 
so it can be used in gradient based optimization techniques 
such as steepest descent, quasi-Newton or Levenberg-
Marquardt methods. There are also several alternatives in 
order to avoid overtraining. One is early stopping, the others 
are regularization techniques which favor smoother network 
mapping by adding a penalty term to the error function.  

In this study, the weight and bias values were updated 
according to the Levenberg-Marquardt optimization. The 
error function to be minimized is a combination of sse and 
ssw (the sum of squared weights):   

   Ereg =αsse + βssw       (2) 
where α and β are the regularization hyperparameters which 
are determined by a Bayesian approach [1].  

The initial values of the weights and biases are randomly 
chosen from a normal distribution with mean zero and 
variance one. The training is repeated 100 times with 
different initializations; the parameters of the MLP which 
exhibit the best performance, i.e. the one with the highest 
AUC on the test set, will be taken as the final parameters of 
the MLP. 

Generalized Regression Networks: 
The generalized regression neural networks (GRNNs) are the 
paradigms of radial basis function (RBF) networks, often 
used for function approximations. It’s another term for 
Nadaraya-Watson kernel regression, and has the following 
form for the function mapping [1]. 
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GRNNs share a special property, namely that they do not 
require iterative training; the hidden-to-output weights are 
just the target values tk, so the output y(x), is simply a 
weighted average of the target values tk of training cases xk 
close to the given input case x. It can be viewed as a 
normalized RBF network in which there is a hidden unit 
centered at every training case. These RBF units are called 

Fig. 2. Architecture of MLPs for Predicting Malignancy of Ovarian Tumors 
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"kernels" and are usually probability density functions such 
as the Gaussians considered in (3). The only weights that 
need to be learned are the widths of the RBF units h. These 
widths (often a single width is used) are called "smoothing 
parameters" or "bandwidths" and are usually chosen by cross-
validation. GRNN is a universal approximator for smooth 
functions, so it should be able to solve any smooth function-
approximation problem given enough data. The main 
drawback of GRNNs is that, like kernel methods in general, 
they suffer seriously from the curse of dimensionality. 
GRNNs cannot ignore irrelevant inputs without major 
modifications to the basic algorithm. 

We denote the GRNN with 8 input variables of MODEL1 as 
GRN1, the one with 7 input variables of MODEL2 as GRN2. 

 
B. Performance Measure 

The most commonly used performance measure of a 
classifier or a model is the classification accuracy, or the rate 
of correct classification, under the assumptions of equal 
misclassification costs and constant class distribution in the 
target environment. Both assumptions are not satisfied in 
real-world problems. Unlike classification accuracy, ROC is 
independent of class distributions or error costs and has been 
widely used in the biomedical field. Let’s give a brief 
description about the ROC curves. 

Assume a dichotomic classifier y(x), which is the output 
value of the classifier given input x. Then the ultimate 
decision is taken by comparing the output y(x) with a certain 
cutoff value. The sensitivity or true positive rate of a classifier 
is then defined as the proportion of malignant cases that are 
predicted to be malignant, and specificity as the proportion of 
benign cases that are predicted to be benign. The false 
positive rate is 1-specificity. When varying the cutoff value, 
the sensitivity and specificity will change. A ROC curve is 
constructed by plotting the sensitivity versus the false positive 
rate, or 1-specificity, for varying cutoff values. The AUC is a 
one-value measure of the accuracy of a test. It can be 
statistically interpreted as the probability of the classifier to 
correctly classify malignant cases and benign cases.  The 
higher AUC, the better the test. In this study, the area under 
the ROC curves was obtained by a non-parametric method 
based on the Wilcoxon statistic, using the trapezoidal rule, to 
approximate the area. This method also gives a standard error 
that can be used for comparing two different ROC curves [4]. 

 
C. Overall performance estimate from cross-validation 

The commonly used method for estimating the 
generalization error in neural networks is cross-validation. 
Holdout method is one often used cross-validation method, 
which partitions the data into two mutually exclusive subsets, 
namely a training set and a test set. This is what we will do in 
the first experiment. 

One can also repeat the holdout method k times. Each time 
a different partition is chosen. Then the estimated AUC is 
derived by averaging over all the runs. However, in medical 
practice, the holdout method makes inefficient use of the data 

set, which is usually smaller than desired. For example, one 
third of the data set is not used for training the classifier. 

K-fold cross-validation is a variant of cross-validation. The 
data set is randomly divided into k (k>1) mutually exclusive 
subsets (k folds) of approximately equal size. The model is 
trained on all the subsets except for one, and the validation 
AUC is measured by testing it on the subset left out. This 
procedure is repeated k times, each time using a different 
subset for validation. The performance of the model is 
assessed by averaging the AUCs under validation over the k 
estimates. Repeating the k-fold cross-validation for multiple 
runs can provide a better statistical estimate. 

The cross-validation estimate is a random number that 
depends on the division of the data set. We hope that the 
estimates have low bias and low variance. Leave-one-out is a 
special k-fold cross-validation, in which the number of folds 
equals the number of available data. This method is almost 
unbiased, but has high variance, leading to unreliable 
estimates. When choosing the number of folds, we would like 
to tradeoff bias for low variance.  
 

IV. RESULTS 
 

The above 4 neural networks, which encompass 2 kinds of 
architectures and 2 sets of input variables, are constructed and 
trained with the neural network toolbox of Matlab 6. Function 
trainbr is used to train the MLPs. Function grnn is called to 
create GRNNs, the optimal values for the width of the radial 
basis function are found by searching in the interval [0.5, 5].  

The overall data, both for input variables and output 
variable, are first preprocessed: the continuous variable 
l_ca125 is standardized and the binary variables {0,1} are 
transformed to {-1,1}, since the two algorithms perform best 
on data within [-1, 1]. 

 
A. AUC from Holdout Cross-Validation 

We take the data of the most recently treated 160 patients 
as test set, the remaining 265 as the training set. The 
proportions of malignant tumors in the training set and test set 
are both about 1/3. Table II reports the AUCs and their 
standard error (according to Hanley and McNeil’s method 
[3]) of the four neural networks, both on the training set and 
test set. The performance of the Risk of Malignancy Index 
(RMI) and two logistic regression (LR) models LR1 and 
LR2, using respectively MODEL1 and MODEL2 as inputs, are 
also shown for comparison. 

TABLE II 
Area Under the ROC curve (AUC) and its standard error 
 Training Test 

Model AUC SE AUC SE 
RMI 0.898 0.024 0.861 0.034 
LR1 0.972 0.013 0.904 0.029 
LR2 0.966 0.014 0.908 0.029 

MLP1 0.975 0.012 0.924 0.026 
MLP2 0.964 0.015 0.917 0.027 
GRN1 0.966 0.015 0.911 0.028 
GRN2 0.968 0.014 0.905 0.029 



We can observe from this table, that LRs, NNs have 
significantly higher AUCs than RMI. However this difference 
is not significant on the test set. Till now, one might ask, how 
much confidence we can get from these results? How 
representative is the test set we choose in this way? To 
answer this question, we will perform a k-fold cross-
validation as introduced above. 
 
B. AUC from K-fold Cross-validation 

As we have a moderately sized data set (N=425) and two 
classes, we developed a stratified 7-fold cross-validation. 
Stratification forces an equal proportion of malignant cases 
(32%) in each fold. For each subset of the data, a model is 
developed with around 365 data in the training set and 60 in 
the test set. This procedure is repeated 30 times, by randomly 
dividing the data set into seven stratified folds. 

The estimated AUC for each trial of 7-fold cross-validation 
is the mean of AUCs, denoted by mAUCs, over all the 7 
validations. Then the mean and variance of the 30 mAUCs 
can be computed. The 30 mAUCs for each model are shown 
in the boxplot of fig. 3. Fig. 4 shows the expected ROC 
curves for models with input variables MODEL1, which are 
obtained by averaging [5]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Boxplot of mean AUCs. The line in the middle of the notched 
“box” is the sample median, the lower and upper lines of the "box" are the 
25th and 75th percentiles of the sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Expected ROC curves of model MLP1, GRN1, LR1, and RMI 

We then conduct a one-way ANOVA followed by Tukey 
multiple comparison [6]. The mean and variance of mAUCs 
of different models are listed in table III ordered by the mean. 
The subsets of adjacent means that are not significantly 
different at 95% confidence level are shown, and are 
indicated by drawing a dashed line under the subsets. We 
conclude that: all the models including LRs, MLPs and 
GRNs, have higher expected AUCs than the risk of 
malignancy index (RMI); the multi-layer perceptrons have 
higher expected AUC than the models generated from the 
other methods.  

TABLE III 
Rank ordered significant subgroups from multiple comparison on mean AUC 

Models RMI LR2 LR1 GRN1 GRN2 MLP2 MLP1 
mean 

mAUC 
 

0.882 
 

0.939 
 

0.941 
 

0.943 
 

0.944 
 

0.944 
 

0.954 
SD 0.003 0.003 0.004 0.003 0.003 0.003 0.003 

 
 

V. DISCUSSION AND CONCLUSIONS 
 
Our experiments confirm that neural network classifiers 

have the potential to give a more reliable prediction of the 
malignancy of ovarian tumors based on patient data. 
Multivariate statistical analysis could be of great help in 
obtaining an overview of the data set and in selecting 
predictive input variables. During network design and 
training, some techniques can be applied in order to avoid 
overfitting. Area under the ROC curves is the advocated 
performance measure of different models.  

However, neural network models are black-box models. A 
hybrid methodology, which combines them with the 
advantages of white-box models (e.g. Bayesian network 
models), might be more promising.  
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